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Proof is given that the loss of stability of the equilibrium state of a self-gravit- 

ating fluid filling a rigid sphere having uniformly distributed internal heat sources 
is accompanied by the onset of a stationary axisymmetric (correct to within an 
arbitrary rotation) flow which remains stable in the vicinity of the point of stab- 

ility loss, This flow is numerically defined as a segment of the Liapunov-Schmidt 

series. The problem of thermal instability of a self-gravitating fluid sphere is 
associated with various theories and hypotheses of geo- and astro-physics, as 
well as with the study of fluid behavior in conditions of quasi-weightlessness. 
Earlier investigations were mainly directed toward the formulation and solution 
of the linearized problem and finding the limit of instability [l]. Their results 
were further developed in later publications(g2, 31 and others). The method pro- 
posed by Chandrasekhar (11 was applied in [4] to the related nonlinear problem. 
The theory of solution branching of equations of stationary convection [S, 6] is 
applied below to the study of convection onset in a self-gravitating fluid sphere. 

1, Statement of problem, A rigid sphere 8 or radius a is filled with a vis- 
cous incompressible fluid acted upon by a spherically symmetric radial gravitational 



952 V.G.Babskii and I.L.Sklovskaia 

field ‘!fi fir SE gr (G is the gravitational constant and p the fluid density). Heat 

sources of constant intensity r are distributed in the fluid which is stationary (the cond- 

ition of mechanical equilibrium is satisfied p]) and whose temperature and pressure de- 

pend only on the radius. The wall temperature is constant (?‘I8 = const) . 
The 10~s of stability of the fluid equilibrium state may lead to the onset of free con- 

vection, The “principle of stability fluctuation” [l] is satisfied in this problem, hence 

the least eigenvaluea of the linearized problem of velocity, pressure and temperature 
perturbations defines the limit of instability 

Au&p-R&, vU=o, A%=: -rUr, Uf8=% 8b==o (W 

The genera?ed convection motion is described by the solution of equations of stationary 
free convection [l, 7] 

Au=(uV)u+Vp- ROr, Vu = 0, u f s = 0 

he= PuVB-ru,, Ols= 0 pz=$$ P=f) 62) 

where fi and P are, respectively, the Rayleigh and the Prandtl numbers, and V, X and 
p are the coefficients of kinematic viscosity, thermal diffusivity, and linear expansion 

of the fluid, respectively. 

2, The oparrtor equations, Let H be the space of pairs I = (u, 0) and 
(U E kf,, 8 E H,) with norm 

Ii 2 IlIf = (11 IJ iI&, -+ li Q rig&P (2-j> 

where H, and Hs are Hilbert spaces introduced in [SJ. 

Lemma 2.1. Problem (1,2) is equivalent to the operator equation 

z = B (R, z) (2 E H) (2.2) 

with the absolutely continuous operator B, while problem (I. 1) is equivalent to the 
operator equation 

2 = A (R), z (2.3) 

with the absolutely continuous operator A which is the Frdchet differential of operator 
3 (R, 2) at point 2 = 0. 

Proof, Problems (1.1) and (1.2) reduce to the operator equations (see [8]) 

II= - KI (uV) u + RKI @rf, 0 = - PLl (UVO) + Li (t& (2.4) 

u = RK1(0rf, 8 = Ll (rar,) (u E HI, e E Wz) (2.5) 

Operators XI and L, have been defined in 181, where it is also shown that K, and 
K, (K,u = -K, (uV) u) are absolutely continuous in*H,, while L, is absolutely contin- 
uous in Hs. We shall prove that operator L, (I+ = -PpL, (uV0)) acting from H into 
HP is absolutely continuous. To do this it is sufficient to show that this operator trans - 
forms any sequence {.a”) weakly convergent in H into a sequence {L;ram} strongly con- 
vergent in If,. Using the integral identity 

s 
V%ucp ds = - 

s 
8uVQ dr (6, Q E Ha. u E HI) P.fi) 

n a 

together with the Holder inequality and the imbedding theorem, we obtain 

(L22 IR - -k”, Q)HI < c, (11 Urn - Un !ik // 0” i@, + 11 em - 61” k, I/ Un b,f ii? [lHt (2.7) 
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Since sequencies {urn) and (em) are strongly convergent in LI, hence from inequality 
(2.7) follows that &a”) is strongly convergent in Hs, if in the latter we assume that 

cp = Lg m - L*P. 
We introduce the following notation: 

A (I?) z = (RKr (er), LI (r+)) (a = (u, 9), u E Hi, 9 E Ha) 

D(z, z)=(-Kl(UV)U, - PLl(UV8)) (2.8) 

B(R,a)=A(R)z+D(e,z) 

Operators A, Band D are absolutely continuous in H.The last statement of the bernma 
follows from the estimates 

II Kan 11~1, < C, II z lb?. II Lg II& < c, II z llfr” GEH) (2.9) 

the first of which has been proved in [9] and the second from an inequality similar to 
(2.7). The Lemma is proved. 

Let R, be the eigenvalue of problem (1.1) and 5 = (u, 6) its related eigenvector. 
Then the corresponding eigenvector of the conjugate problem 

Aw=Vq-rr, VW=& Az=--Rorw,, wJs=O, zls=O (2.10) 

is of the form 
rl = (w, t), w = R,‘u, z = 8 (2.11) 

From (2.10) also follows that 

A* (R) a = (K, (rr), RL, (rw,)) (z = (w, T), w E H,, z E R,) (2.12) 

3. The apectrrl problem. The linearized system of Eqs. (1.1) permits the 
separation of variables. when seeking the solution in the form of series in generalized 
spherical functions Tkn (‘/,a - cp, 6, 0) [lo]. As the result, we obtain a problem 
of eigenvalues with respect to parameter R for the system of ordinary differential equa- 
tions [ll] 

2 
Dtul = ra~t -+p, (& = s++-&-‘.), vr(j) = 0 

P-1) 2 
DM =raw + 

21 (I + i) @l ~ vI + dr - Rrel, UI (1) = 0 ,.a 

$+ 
I(1 + 1) 

$.w + 7 v1 = 0, DIBl = -ruf, e,(i) =0 (1==1,2,3 ,...) 

with conditions of boundedness in zero. We eliminate pt and LQ from system (3.1) 

D1801 = RZ (Z + 1) 13~ (q = ml), 01 (0) = WI (1) = 01’ (1) = 0, 01’ (0) < 30 

D,e, = - 01, el (1) = 0, e1 (0) < m (3.2) 

Green’s function G,, (r, s)of operator -?Di with boundary conditions u (1) = 0 and 
u (0) < oo and Gceen’s function Gsr (5, s) of operator r2D12 with boundary condit- 

ions u (1) = u’ (1) = u (0) = 0 and U’ (0) < oo are symmetric and of the form 
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$1 (s) = (21 - 1) #+a - (21 + 3) sl + (21 + 3) s-I+’ - (21 - 1) s-l-1 

q12 (s) = (2 + 2) (21 - 1) s’+’ - (I - 1) (21 + 3) s1 - 

- z (21 + 3) s-l+1 + (1 + 2) (2Z- 1) s-[-l 

We define the integral operators G,, and Ggl by formulas 

G,& = f G&I (~9 Y) 9 (Y) Y’dY (k = 1, 2; 1 = i, 2,...) 

0 

(3.4) 

(3.5) 

With the use of these operators the problem (3.2) reduces to the integral equation 

0, = hlGlel (h, = RI (I + i), Gz = G,lG,,) 

Lemma 3.1. Operator GL is oscillatory. 

‘3.6) 

The conditions for the one-pair kernels [12] to be oscillatory are satisfied for G,t (r, S) 

and the oscillatory character of ~$(.7, s) is implied by the admissibility of presenting 

operator ?D12 in the form 

-I-$ r21t2p r -21_ ,2l+2d -1 d 
rsD,% = r dr dr r u (3.7) 

and by the results presented in [ 121 (see [13], Lemma.3.2). The kernel of operator t$ 
is oscillatory, since it is a composition of oscillatory kernels [14]. 

It follows from Lemma 3.1 that for any Z (I = 1, 2, . ..) operator Gr has a sequence 

of simple positive characteristic values 0 < h,r < hsl < . . . , which implies that 

(XR,~<R,I<... (3.8) 

The sought minimum characteristic value of operator A (R) is minlRII(Z = 1..2...). 
kt K be the cone of nonnegative functions from C 10, 11 . We set ~0 = rr (1 - r). 

and separate in the space C 10, 11 the subspace E,, of functions with the finite norm 

uo l 
By definition [ 15] 

IL = - E,,: - w. < u < wo; %t % > 0; II u llu” = max { inf a,, inf z2} (3.9) 

where inf is taken over all or and o2 for which these inequalities are satisfied. We 
introduce the subsidiary cone K,, = E, f-j K which is normal to and solid in E,, 
c151. 

Lemma 3.2. Operator G, is strongly positive with respect to cone KU,. 
Proof. The Lemma implies that for any arbitrary function u E KUOfunction Gr u 

is an internal element of cone K,. We note that, owing to the oscillatory properties 

of the kernel of Gzr (2, s) (Lemma 3. l), cone K is invariant with respect to operator 

&I l 
Hence it is sufficient to prove that operator Glz transform cone K into an inner 

part of cone Kuo. 

Green’s function %II (r, ,s) satisfies condition Gil (T, S) > 0 (0 < r, s < i), as well as 
the following readily verified conditions: 

o”G, l (r , s) 
-k SO, 

alclI (r, s) 
>OP G,,(iP 8) ==o, 

aGII (r, 4 

ar <O 
f'r r-0 ar' r==0 I r=1 

(k = 1, 2, . . . . 1 - 1) 

Thus operator Grr transforms any function u E K into a function of the form 

r’ (1 - r) f (r), f(r) >O (0 < r < I) (3.10) 
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From (3.10) follow the inequalities 

W&J 4 GllU d $uo, a = min f (r), p=maxf(r) @<r(i) (3.11) 

Since u0 is an internal element of cone KU, [ 151, it follows from the inequallties (3.11) 
that G11 is also an internal element of K,. The Lemma is proved. 

Corollary. The eigenfunction err (r) corresponding to the characteristic value 

fill is an internal element of cone K, , i.e., it is of the form (3.10). 

Lemma 3.3. Operator 1 (I + 1) Gl is monotonic with respect to parameter I , 
lGl> (I + 2) Gi+,. 

Proof. Let u-s prove the monotonousness of operator Gil 

G,I > G1, 1+1 (3.12) 

Indeed, for r < s 
G 1*l+l(r, s) - G,l (r, s) =I z’s? (2, s) (2 nrs-‘<I) 

f (z, 1 4 = - 21+3 2s -11+3 1 21+1_ +3iqs ( 1 1 1 21+1--2 21+ 3 

Sincef(a,l)=U andaf/%>O(O<s<i),functionf(n,s)<Owhen O<r< 
< s < 1. By virtue of the symmetry of Green’s function Gl[(r, 3) the inequality Gl,l+l(r,s)< 
< GIL@, s) holds also for 1 > r > s > 0. 

Let us now prove that 

lG,l > (I + 2) G,, 1+1 (3.13) 

Indeen for 5 < s 

(I + 2) %, 1+1 b, S)- l$,(“’ s) = 
.I s-l-2 

4 (21+ i) (21$- 3) p (=> s, 

p (5, s) = -al (s) .z+ + a, (8) x2 + u3 (s) 5 - a4 (s) 

(ai (s) > 0 for 0 < s < 1) 

Function P (x, s) < 0 (0 < 5 < s < 1). Owing to the symmetry of Green’s function 
G21 (x, s) we have (1 i- 2) Gz,I+~ (x, s) < 1 Gal (x, s) also for 1 > t 2 s > 0. Since Gl = 
= GuGsl the proof of this Lemma follows from (3.12) and (3.33). 

The positiveness and monotonousness of operator l (I + 1) G, implies the monoton- 
ousness of its minimum characteristic value R,, < RI,l+i. Hence it follows from ine - 

quality (3.8) that I?,, is the minimum characteristic value of operator/i (R) . The 
dimensionality of the eigen-subregion corresponding to that value is equal three, and 
there are no adjoint vectors. This can readily be proved by, for example, symmetrizing 

operator A or simply by using Lemma 1.5 in 191. Let us prove that (5, q)~ where 6 z 
= (u, 0) is the eigenvector of operator A (R,,), and q = (w, z) is that of operator 

A * (R,,) (see (2. ll)), is not zero 

4. The bifurcation point and branching. As shown in Sect. 3. operator 
A (R) has R,, as its odd-multiple minimum value. (We shall denote it by R,). 
This together with Lemma 2.1 make it possible to apply to Eq. (2.2) Krasnosel’skii’s 
theorem on points of bifurcation, as modified in [lS]. 

Theorem 4.1. Point R, = R,, is a point of bifurcation for Eq. (2.2). 
Thus branching of solutions of Eqs. (1.3) occurs when the Rayleigh number equals A,. 

Let us examine the branching at this point by the method of Liapunov-Schmidt. 



956 V.G.F!abskii and I.L.Sklovskala 

We select in the eigen-subspace z,, of operator A (R,) the following basis: 

L = fu (t) % (Ysz - rp, 6, f% n (r) G (‘i@ - % @, 01, u {Y) Gk (‘/asI - gp, 6, 0) 

8 (r) T& (Van - cp, 6.0)) (k - - f,o,f) 
Let R = R, i- cc+ We seek the solution of equation 

(4. f) 

2’ = B (R, z’) (4.2) 
of the form 

z’ = 2 + i: c+&, fz,rl&r=O (k=--i1.011) (4.3) 
Lx-1 

Substituting (4.3) into (4.2). we obtain 

a-A((R*)z=lr i 
k=-1 

akb5k + A h) 2 + L)(z -b i akt& 2 $ i skgk) = Qz 

k=-1 k=-l 

(4.4) 

A,(z) = W, (Tr), O), z =(V,T)EN (4.5) 
We introduce the projective operator 

Ilg, = v- i aktiik, q’=H (4.61 
k=-1 

and, using the solvability condition of Fredholm’s equation, we write (4.4) in the equi- 
valent form 

z - A (R,) z = IIQz, (Qz, q/&f = 0 (k = - i,o. 1) (4.7) 

Before passing to finding small solutions of Eq, (4.7), we shall simplify the problem 
by using the theorem on branching of solutions of nonlinear equations with respect to 
transformations of any arbitrary compact group (i [S]. In the problem here considered 

it is expedient to chose a group of three-dimensional space rotations for such group. 
let L, be the representation of a group of rotations. Equation (4.4) is invariant with 

respect the L, -transformations 

LgA (R) z = A (lt) L,z, L&z = QLg (zeH,gczG) (4.8) 

In fact: the Laplace operator is invariant with respect to the Lg-transformation [lo]. 

Let g E G be an arbitrary rotation transforming the orthogonal coordinate system 
with its origin at the center of the sphere into system yl (i, I == 1, 2, S).The equal- 
ities 

then become obvious. Hence 

&, fuV)u :- (u~9)u~, f&T ;3 u,VT, (11~ = L,u, T, -= L,T) 

We note that the eigen-subspace 2, of operator A (X,) is invariant with respect to 
L,. In [5] the representation L, is called complete in Z,, if for any pair S’, 5” -5 

E 2, we can indicate a g F=: (; so that 

[,& := X5” (r > ii) (‘l-9) 

Lemma 4.1. The representation of the group of three-dimensionai space rotations 

for 1 = 1 is complete in the eigen-subspace z. of operator A (R,). 

Proof. bet 5’ = 2 ,+ ch.. The function of r is invariant at any arbitrary rotation, 
h_=___l 
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hence the analysis of Lg:’ reduces to the analysis of (see (4. I)) 
I 

k-l 

Functions Tfnn are simultaneously matrix elements of the L, -representation [lo]. The 
properties of functions Tfnn (l/z n - cp, 6, 0) imply that 

k--l k--l k-=---l n-1 

(4.10) 

n=-1 k-1 

For 1- 1’ matrix ‘I$,, is equivalent to the matrix of rotation g fqI, cp,, 6) [lo], where 
fpl, %s and 6 are Euler’s angles defining the rotation. From (4.9) and (4.10) now follows 
that the representation Lg will be complete for I L- 1, if for any specified real ak and 

&I 6% n = -1, 0, 1) such 91, (pa and 6can be found so as to satisfy equalities 
1 

z ‘kgkn = @, (n fp - 1, 0, 1; a>O) 
k=-1 

Simple calculations show that, for (pp determined from the equation @_I cos 9% - 

- /3,, sin as = 0 (if p_1 = p,, = 0 then angle rp, is arbitrary) the angles ‘PI and 6 are 
determined from equations 

tl-1 cos qpl + a0 sin 9)1 = 0 (4.11) 

al-al[B,60s~+(~0cos(P2+B-~sincp,)sin6]=0 

where a > 0 can be chosen so as to make Eq. (4.11) solvable. The Lemma is proved. 
When 1 = 1 there is a subspace Ho C H containing co which consists of axisymm- 

etric vectors orthogonal to & and 5, and invariant with respect to operators A and Q. 

AS shown in [S], small solutions originating at the bifurcation point R, may be sought 
in the invariant subspace Ho. All other small solutions branching off at that point are 

obtained from solutions derived by means of transformation ,!I,,. 
Smali solutions of Eq. (4.7) in Ho can be sought in the form of series expansions in 

powers of paraEeters a and p (the zero subscript at U, 5 and 7\ is henceforth omitted) 

z = 2 zpqap~q, 200 = 0 (zpq, r)k)H = 0 (k= - i, 0, i) (4.12) 
P.Q@ 

The coefficients appearing in (4.12) are defined by equations 

ZID - 201 = zo2 = ?I12 = 203 - -- 0, 220 - A (I?,) z20 = I-ID (5. 5) (4.13) 

and so forth. Substituting (4.12) together with the now known coefficients into the equ- 

ation (Qz, ?JI)~{ = 0 (where CL, = a, = 0 is assumed), we obtain the branching 

equationsPa (A 051 T1)H + a2 (D (5, Q, q)f.j + a3 CD” @20, 5>, @If + -*. = 0 

D” (Zl, ZJ = D ($7 z*) + D (zz* 2,) (4.f4) 

Theorem 4. 2. The emergence of new solutions of Eq. (4.2) takes place when 
the Rayleigh number passes through R,, and one nonzero solution 
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(4.15) 

corresponds to within an arbitrary rotation to every R > R, close to R,. 
Proof. The coefficient at 32 in Eq. (4.15) vanishes bv virtue of the known ident- 

ities (D (5, 5) QH = - R,-’ (Kl (uv) us “)H, - I’ (h (uV6), 6)& = 

=-RH,-‘*(uV)uudz- P 
J ! 

‘0uV0dx=O 

61 kl 

The coefficient at ~“2 in the branching equation is of the form 

The coefficient at z3 reduces to 

I = (D” (220, 5), QH = - R;’ It no II&, - II T2o II’,, + 2 s 3,,, rT2,, dz (4.17) 
$2 

It is not difficult to prove that this value is negative. For this it is sufficient to note that 

operator M defined by the equalitydlu -= K, (rL, (rur)), which in H, is self-conjugate 
and positive [S]. The negativeness of I in (4.17) follows from the variational principle 

for operator M. Thus y > 0 and as shown by Newton’s diagram [17]. the solution of Eq. 

(4.2) can be sought in the form of a series expansion in powers of E = p”* 

2’ = ; akzI( 

where ak satisfies the equations k=l 

Zk - .‘l (Ii,) Zk = A03k_2 + 2 D” (zmp 2,)s y, 
m+n=k 

We seek zk in the form 

(4.18) 

For k = 1 we have 

The condition of solvability of Eqs. (4.18) (qA, @a = 0 for k = 2, 3, . . . we have 

It is readily seen that 61’~ = y and Q = 110. The Theorem is proved. 

5. Calculrtfon of convection. We apply to the integral equation (3.6) at 
l = 1 the iteration method proposed in [12] for nonnegative matrices. This method, 

which can be readily used for equations with strongly positive operators, consists in de- 
riving consecutive.two-sided estimates (3.9) 

min 
P) (r ) 

<)t,<max 
P’ (r) 

o<'rg1 e@-')(r) nsrsl 6(“-l’ (7) 
= II W-1) II 800, C)(n) zz (Q(n-1) (5.1) 

which converges to the first characteristic value A, of operator Gr, while the sequence 
of functions (l(n) converges to the eigenfunction f3,. We take us 1 I+ = r (1 - r) 

from cone K,,, as the first approximation, and write the condition of normalization as 
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The fifth iteration carried out on a computer yielded estimate 

8042.1 < R, < 8042.3 (5.2) 

Fig. 1. 

Fig. 3. Fig. 4 

Fig. 2. 

With three supporting functions the Ritx method had yielded 8, =: 8041.7. Having de- 
termined R, and Q,, we find with the use of operator G,, from Eqs. (3,l) for @I (r} 
and r,$ (I^) the expressions 

. 

Substituting in the expressions for 8 (P, @) and U (r, t?) the related generalized 
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spherical functions, we find the explicit form of the eigenvector 5 z (U, 0) corres- 
ponding to fl, 

u, = U1 (r) co9 6, 24, = 0, %a = u1 (r) sin 6, 8 = 8, (r) co9 6 (5.4) 

Vector Zso = (vt T) is the solution of the last of Eqs, (4.13) or of the following 
boundary value problem: 

Av=Vp+(uV) U--&Y vv=O 

AT = PUVe c n),., v 1s = T 1s = 0, (V, u)& = 0, tT, e)Hz = ’ (5.5) 

which is solvable by virtue of the identity 

d 
(UV) uudz = 0, 

d 
f3uVOd.r = 0 

The solution of problem (5.5) is of the form 

nrZ= r/s (3 coss 6 - 1) wgo (r), u8 = 3 sin 6 cos * w21 (9 (5.6) 

p = p. (r) + v2 (3 COS2 6 - 1) p2 (r), T = Pt, (r) + V2 (3 COS’ 6 - 1) ~2 (d 

For po and to we have 

p. (r) = 5 [R*s%l(s) - CD, (s)] ds + con& z, (r) = j p-2 p a* (s) S’WP (5.7) 
0 

1 0 

Here and in the following 

~,(~)=~(ul~+Iulul+~ull), (o,(~)=f(U1~+fUIUl+~U1o 

Q(~)=+~~~-$%$G~), ~,(4=+$++4r) 

Functions wso (r) and 2s (r) are determined when solving the boundary value problem 

D2'020= 6R*r2+ @2 + -$-(G), ~20'(0) < =h Wzo = 0~0) (5.8) 

- D2z2 = 01~~ - @)5, 020 (0) = 020 (1) = 020’ (1) = r2 (1) = 09 72 (0) < 30 

Fmblem (5.8) reduces to the integral equation with operator G, from (3.6) 

7, = GR,G,z,+@, @ = G, O2 + -$-A&) - G,,@‘ 
t 

(5.9) 

This equation was solved by the method of successive approximations, which is conver- 
gent, since the minimum characteristic value RI2 of operator 6G, is greater than 

R,, as shown in Sect. 3. This characteristic value was derived by the iteration method 
and it was found that R, / R,, z 0.8. If @ ( r is taken as the zero-approximation, ) 
a satisfactory approximation is obtained at the 20 - 22nd iteration. 

Having determined 7s (r), we find wZo (r) and w,, (r) 

wpl (r) = - + f [‘w + $ Gz2 (r, s)] (~A,IF~ (s) + Y (s)) s’ds (5.10) 
0 
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Constant y is determined by expressions (4.5) - (4.7) 

T = - 11 u &JR*‘~ (5.11) 

Calculations were carried out on a computer. Functional dependence y (P) is fairly 

accurately defined by the formula y = 10-‘Pma (a recalculation had shown a satisfac- 

tory correlation with the approximate results cited in [4]). The remaining results are 

shown in Figs. 1 - 4. while Fig. 5 shows the pattern of the convection flow appearing 
immediately after the loss of stability at R = 8042.5 and p -_ 4. This pattern does 

not appreciably vary with increasing Rayleigh number, although the motion intensity 

increases. Thus for R = 8942 and P = i the Reynolds number calculated from 
the maximum flow velocity is close to five. 

6. Strbility of convection motion, The stability of certain secondary 
flows was investigated in [S. 151 by the method of perturbations. Let us use this method 

for proving the stability of the convection motion of a fluid in a sphere for small e 

VO = fb -I- Teav $ 0 (e9), To = Too + f&3 + yeaT + 0 (es) (64 

The investigation of stability reduces to the spectral problem with respect to parameter (J 

-a-&+ Av’= Vp'+(v,V)v'+(v'V)v,-(R, + 8%) rT’, Vv'= 0 

--aPT'+AT'= Pv,VT' + Pv’VT,, v’ is = T’ Is = 0 (64 
which is equivalent to the operator equation in spaceH 

I - (6*3) 

where z’ = (v’.BT’), 

A (R,. zr = D” (zo, z’) + 9Aoz - cd? 

z a = (vO, T,) and C = (K,, PL,). The basis in the eigen- 

Fig. 5. 

subspace 2, of operator A (R*) may be selected as 

follows: 6: u r = us (r) co9 fi, ue = u1 (r) sin 6, 

ug = 0 8 = 81 (r) CO8 6 

g,: Up) = 741 (r) co9 6 cos cp 

u 6”’ = u,(r)sin6coscp 

U* (I) = VI (r) co9 6 sin cp 
cfw = 0,(r)cos+.hosrp (6.4) 

5 C-11 -1: % = u1 (r) cos # sin 
&l) = u1 (r)sinflsing, 

(-1) 
Ur = us (r) co9 6 COS q 

Oc-u= 0, (r) co9 6 sin tp 

We seek the solution of Eq. (6.3) in the form 

z’ = i 6&$ f 2? (It, qk)H = 0 
k==-1 

fk = - 1, 0, 1) (6.5) 



962 V.G.Babskil and l.L.Sklovskaia 

Substituting (6.5) into (6.3) we obtain i 

L - A (H,) .r = 2 &D” (20, 5r) + D” (z,,, x) + 
k=-1 VW 

+ E2 i 6,&$&k + E2A,,s - 6 i 6&& - sex = &x 

k=-1 k=-1 

or in the equivalent form 

x - A (R,) x = n&r (6.7) 

where n is the projecting operator (4.6). 
It should be noted that the eigenvalues (T of Eq. (6.6) with a positive real part are 

uniformly bounded with respect to E; Is]< a,, [6, 18, 191. Hence, in accordance with 

the theory of spectrum perturbation, only that eigenvalue oc of Eq. (6.6) which origin- 

ates from u0 = Ocan appear at small a in the right-hand half-plane. 
The t-solution of Eq. (6.7) can be sought in the form of a series expansion in powers 

of e and a 

x= i &SQX PQ’ X00 = 0 w3) 
9.4=-o 

Vectors xpp are defined by equations 
1 

x10 - A vu %I = n 2 &c?+~ (6, tk) 

k-1 
1 

(6.9) 

Xol - A (R,) X01 = - n z: btctk 

k=-1 

and so on. Substituting series (6.8) in the right-hand side of Eq. (6.6), we obtain the 
conditions of solvability of this equation 

(6.10) 

This yields three algebraic equations in E, cr and 6 k. It is expedient to chose the follow- 
ing condition of normalization: 1 

By modifying somewhat the Theorem 1 in [5] the number of equations in (6.10) can be 
reduced to two. 

Let G’ be a group of circle rotations (g E G’ is a rotation about angle g). For g E 

EG’,uEH,and TEH,weset 

Lg’u(r, e,cp)=u(r, 6, cp fg). L,‘T (r, 6, cp) = T (r. 6, cp + g) 

It is not difficult to verify that Eq. (6.3) and the eigen-subspace z,, of operator A (R*) 

are invariant with respect to operators L,‘. The representation of La’ in space Z,, has 

the following property: for any 5’ E 2, and I;’ E ZO’, where Z,,’ c Z,, spans 5 and &, 
it is possible with the use of (6.4) to find a g such that I Lg’r = 5” = fi 5 + p1 &. 

There exists a subspace H’ CH which is invariant with respect to operators A, D 
and C, contains 20' consists of vectors I = (v, T) orthogonal to 5-r and satisfies the 
following conditions of evenness: 
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This statement is directly confirmed by the system of Eqs. (6.2) equivalent to Eq. (6.3). 

It can be readily shown, as was done in [5], that small solutions of Eq. (6.7) may be 

sought in subspace H’. If such solutions exist, all remaining small solutions in H are 
derived from these by the transformation L,‘. 

Let us examine Eqs. (6.10) for k = O,and k =z 1. First, we note that (6.4) and 
(4.15) imply the equalities 

tD* (5, Sk>, qk)Fl = 0 (k==O, 11 

r tf3” bb, tk), qk)EI + (“%tk, qk)R = 0 (k = 0, i) 

It follows from Eqs. (6.9) that 

2 Pcl = i 6k$i 

k=-1 

where by now x*e Ir is independent of 8& and for k = 0, 1 the system of Eqs. (6.10) 
becomes 

or 

(6.U) 

(6.12) 

Lemma 6.1. Functions+F (8, O) and F, (e, 0) are linearly independent. 
Proof, Equating the first of Eqs. (6.9) and the second of Eqs. (4.13) we obtain 

210 = 27’&0* 220 = (nr’ u&’ 6; T, (6.13) 

$) P 27’&$ z$ = (vr cos 6, Do sin cp, v$); T co9 cp) (6.14) 

For k = 0 we then have (see (4.15)) 

7”’ (D” (f;, ao), q)f$ = - 2 (49 )1)H (6.15) 

(6.16) 

Taking into consideration (6.4) and (6.14) for k = 1 , we have 

?‘* (B” (5% a$))* fll)H = - (Ao6. rj)H 

Ul 
IT 

a11 l)$p= II, 
ss 

(u: + tti + ui ctgs 6 + PR,W) sin 6 dWdr 
00 

(6.17) 

(6.18) 

Thus, equating in Eqs. (6.11) for k = 0 and k = 1 the coefficients at a and 

from (6.15) - (6.18) we obtain 

The Lemma is proved. 
It follows from Lemma 6.1 that system (6,12) splits into two independent equations 
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6 l-0,6= 1, F (E, CT) = 0; 6 = 0, 6, = 1, F, (e, a) = 0 (ti.19) 

where Fk (E, 0) is an analytic function of E and 0. As implied by equalities (6.16) 
and (6.18) 

iIF& / b’&=a.y, = -(c&t, qk)H # o (Is = 0, 1) 

Hence by the implicit function theorem each of Eqs. (6.19) has a unique solution o, 
which is analytic with respect to E 

G1 = - E2 2 ;‘$;z + 0 (e2), 6, = - E2 (4l~~ a + o(e2) 

(CC,- 4l)H 
(6.20) 

It follows from (4.16), (6.16) and (6.18) that for small E 

01 < 0, 02 < 0 

Thus the convection flow defined by (6.1) is in the first approximation asymptotically 
stable, while according to [19] a nonlinear stability is also present. We note that the 

equilibrium state Tat, = c - ‘/ar’ loses its stability, when R passes through a*. To 
prove this it is sufficient to set in (6.11) y = 0, which yields 

’ = e2 @t,S qk)H 
(Ao6k' 'h)H + o te2) >o (k 

-0,1) 

The authors thank V. I, Iudovich for the helpful discussion of this subject. 
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D~~~TIONEYAC~UL~~L~ OFLONG WAVY P~UC~D 

BY A RIPARIAN SOURCE 

PMM VoI. 35, Nn6, pp* 1015-1022, 1971 
S, Ia. SEKERZH-ZEN’KOVICH 

(Moscow) 
(Received April 6, 1971) 

The diffraction of long cylindrical waves by a circular island situated in a rota- 
ting tank is considered. It’is shown that, when the wavelength is small in com- 
parison with the island radius, a resonanace capture of waves by the island takes 

place. Unlike in the author’s paper [ 11 which analyzed the diffraction of mono- 
chromatic plane waves by a circular island in a rotating tank of constant depth, 

here the diffraction of cylindrical waves produced by a source at the island 
boundary is considered, As in Cl], the wavelength is assumed to be considerable 
in comparison with the depth of the tank, but small relative to the island radius. 
A solution in the form of a conventional slowly convergent Fourier series is first 
derived, and then transformed by Watson’s method into a fast convergent series, 

which makes it possible.to determine the pattern of wave diffraction, at least 

along the island periphery. Many details of the derivation of solution have been 
omitted here. One of these details can be found in (1, 2’j1 while others may be 
obtained by small alterations in the calculations presented in those papers. 

1, Stat~mo~t of problem, Fourier ssrlsr for ths alrvrtfon of 
fluf d s A horizontally unbounded tank filled with a heavy perfect fluid rotates at 
angular velocity o in a counterclockwise direction about a vertical axis. Depth of the 
tank is throughout uniform and equal h.The tank contains a source generating cylindrical 


